Comparison of Loss in Silica and Chalcogenide Negative Curvature Fibers as the Wavelength Varies

نویسندگان

  • Chengli Wei
  • Jonathan Hu
  • Curtis R. Menyuk
چکیده

We computationally study fiber loss in negative curvature fibers made with silica, As2S3 chalcogenide, and As2Se3 chalcogenide glasses with a fixed core-diameter-to-wavelength ratio of 30. We consider both simple and nested geometries as the transmission wavelength varies. At wavelengths shorter than 4.5 μm, silica negative curvature fibers have a loss that is around or below 10–1 dB/m and are preferable to chalcogenide fibers. At wavelengths longer than 4.5 μm, it is preferable to use As2S3 chalcogenide or As2Se3 chalcogenide negative curvature fibers since their loss is one or more orders of magnitude lower than the loss of silica negative curvature fibers. With nested negative curvature fibers, chalcogenide fibers have losses that are lower than those of silica fibers at wavelengths larger than 2 μm. However, it is still preferable to use silica nested negative curvature fibers at wavelengths less than 4.5 μm and with a loss around or lower than 10–1 dB/m due to the fabrication advantages of silica fibers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Analysis of Index-Guiding Photonic Crystal Fibers with Low Confinement Loss and Ultra-Flattened Dispersion by FDFD Method

In this article, perfectly matched layer (PML) for the boundary treatment and an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD) method were combined to model photonic crystal fibers (PCF). For photonic crystal fibers, if we assume that the propagation constant along the propagation direction is fixed, three-dimensional hybrid guided modes can be calculated by us...

متن کامل

Fabrication tolerances in As2S3 negative-curvature antiresonant fibers

We computationally investigate fabrication tolerances in As2S3 negative-curvature antiresonant tube-lattice fibers. Since the dominant loss mechanisms for silica in the mid-infrared (mid-IR) is material absorption, As2S3, which offers a reduced loss over that wavelength range, is a natural candidate for mid-IR antiresonant fibers. However, any fiber fabrication technology, including for soft gl...

متن کامل

Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers.

We study bend loss in chalcogenide negative curvature fibers with different polarizations, different tube wall thicknesses, and different bend directions relative to the mode polarization. The coupling between the core mode and tube modes induces bend loss peaks in the two non-degenerate modes at the same bend radius. There is as much as a factor of 28 difference between the losses of the two p...

متن کامل

Low loss silica hollow core fibers for 3-4 μm spectral region.

We describe a silica hollow-core fiber for mid-infrared transmission with a minimum attenuation of 34 dB/km at 3050 nm wavelength. The design is based on the use of a negative curvature core wall. Similar fiber designed for longer wavelengths has a transmission band extending beyond 4 µm.

متن کامل

Spectral attenuation limits of silica hollow core negative curvature fiber.

In this paper we discuss the limits of attenuation of silica hollow core negative curvature fibers in the wavelength range from 800 nm up to 4.5 µm. Both numerical and experimental results are presented and show good agreement. A minimum attenuation of 24.4 dB/km was measured at around 2400 nm wavelength, while 85 dB/km was measured at 4000 nm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016